Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli.

نویسندگان

  • J B Miller
  • N K Amy
چکیده

We examined molybdenum cofactor activity in chlorate-resistant (chl) and nitrate reductase-deficient (nar) insertion mutants and wild-type strains of Escherichia coli K-12. The bacterial molybdenum cofactor was assayed by its ability to restore activity to the cofactor-deficient nitrate reductase found in the nit-1 strain of Neurospora crassa. In the wild-type E. coli strains, molybdenum cofactor was synthesized constitutively and found in both cytoplasmic and membrane fractions. Cofactor was found in two forms: the demolybdo form required additional molybdate in the assay mix for detection, whereas the molybdenum-containing form was active without additional molybdate. The chlA and chlE mutants had no detectable cofactor. The chlB and the narG, narI, narK, and narL (previously designated chlC) strains had cofactor levels similar to those of the wild-type strains, except the chlB strains had two to threefold more membrane-bound cofactor. Cofactor levels in the chlD and chlG strains were sensitive to molybdate. When grown in 1 microM molybdate, the chlD strains had only 15 to 20% of the wild-type levels of the demolybdo and molybdenum-containing forms of the cofactor. In contrast, the chlG strains had near wild-type levels of demolybdo cofactor when grown in 1 microM molybdate, but none of the molybdenum-containing form of the cofactor. Near wild-type levels of both forms of the cofactor were restored to the chlD and chlG strains by growth in 1 mM molybdate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci.

We examined the properties of mutants of E. coli which are defective with respect to nitrate reductase activity. chlE::Mu cts and chlG::Mu cts mutants were all chlorate resistant, and the strains that we examined all synthesized nitrate reductase apoenzyme. We concluded that the chlE and chlG loci, like the chlA, chlB, and chlD loci, are involved in the synthesis of insertion of molybdenum cofa...

متن کامل

TusA (YhhP) and IscS are required for molybdenum cofactor-dependent base-analog detoxification

Lack of molybdenum cofactor (Moco) in Escherichia coli leads to hypersensitivity to the mutagenic and toxic effects of N-hydroxylated base analogs, such as 6-N-hydroxylaminopurine (HAP). This phenotype is due to the loss of two Moco-dependent activities, YcbX and YiiM, that are capable of reducing HAP to adenine. Here, we describe two novel HAP-sensitive mutants containing a defect in iscS or t...

متن کامل

Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity.

Dimethyl sulfoxide reductase, a terminal electron transfer enzyme, was purified from anaerobically grown Escherichia coli harboring a plasmid which codes for dimethyl sulfoxide reductase. The enzyme was purified to greater than 90% homogeneity from cell envelopes by a three-step purification procedure involving extraction with the detergent Triton X-100, chromatofocusing, and DEAE ion-exchange ...

متن کامل

Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli.

A unique class of chlorate-resistant mutants of Escherichia coli which produced formate hydrogenlyase and nitrate reductase activities only when grown in medium with limiting amounts of sulfur compounds was isolated. These mutants failed to produce the two molybdoenzyme activities when cultured in rich medium or glucose-minimal medium. The mutations in these mutants were localized in the moeA g...

متن کامل

Characterization of molybdenum cofactor from Escherichia coli.

Molybdenum cofactor activity was found in the soluble fraction of cell-free extracts of Escherichia coli grown aerobically in media supplemented with molybdate. Cofactor was detected by its ability to complement the nitrate reductase-deficient mutant of Neurospora crossa, nit-1, resulting in the vitro formation of nitrate reductase activity. Acid treatment of E. coli extracts was not required f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 155 2  شماره 

صفحات  -

تاریخ انتشار 1983